Final

Introduction to Computational Logic

Fall 2024

- (1) Please select the topics you like in the class (multiple choices): (20%)
 - (A) propositional logic (B) predicate logic (C) program verification (D) model checking
- (2) Recall that a logic formula is in negation normal form if negations (\neg) only occur before propositional atoms. Show that every LTL formula ϕ has a semantically equivalent formula ψ in negation normal form. (20%)
- (3) Consider the LTL formula $\phi \triangleq \neg (a \cup \neg b)$. Construct a transition system A_{ϕ} that accepts exactly the traces satisfying ϕ . $C(\varphi) = \{a, \neg a, b, \neg b, a \cup \neg b, \neg (a \cup \neg b)\}(20\%)$
- (4) Consider the following transition system $\mathcal{M} = (S, \rightarrow, L)$:

Compute the following sets:

(a)
$$\{s \in S : \mathcal{M}, s \models \mathbf{EF}(q \land r)\}; \le 0$$

(b)
$$\{s \in S : \mathcal{M}, s \models \mathbf{EG}r\}.$$
 $\zeta_1 \qquad \zeta_2$

(20%)

(5) Consider the following program E:

$$(f+x) + (yx) \cdot \frac{f}{4-1} \qquad f + (yx) \cdot (f)$$

$$\int_{1}^{2} any \qquad \int_{1}^{4} any \qquad f$$

$$f + (yx) \cdot (f)$$